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Overview

■ Background
– Hydrogen separating membranes

■ Coal-gas reforming in a PMR
– Where membranes fit into Vision 21

■ Fabrication and testing of palladium 
composite membranes
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What’s so special about palladium?

■ Palladium (Pd) can 
absorb many times its 
volume in hydrogen

■ Pd is catalytically 
active for hydrogen 
dissociation

■ Alloys of Pd are 
durable

*http://www.psc.edu/MetaCenter/MetaScience/Articles/Wolf/Wolf.html
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Vision 21

■ Part of Vision 21 entails coal gasification to recover 
both H2 for fuel cell use and CO2 for sequestration

– http://www.netl.doe.gov

■ A PMR accomplishes this in a single unit operation
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Scale-up issues for Pd membranes
■ Cost

– price of Pd is ~$150/ounce (April, 2003)
– thickness of Pd film will be < 2 µm for $50-100/ft2

■ Poisoning by process stream impurities
– unsaturated hydrocarbons, H2S, carbon monoxide (CO)
– should be regeneratable in steam or air

■ Embrittlement
– resistance to thermal cycling
– α → β (α’) phase transition

■ Leak-free sealing
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How do we address these problems?

■ Cost
– thin films of Pd on hydrogen-porous supports
– minimize Pd film thickness

■ Poisoning
– remove most H2S up front
– PdCu40 is sulfur resistant

■ Embrittlement
– Pd alloys reduce distortion upon hydriding/dehydriding
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Types of composite configurations

■ Refractory metals have high hydrogen permeabilities
– surfaces readily poisoned
– must coat with Pd on both sides of metal foil or tube
– ion-cleaning in-situ followed by sputter deposition of Pd

■ Pd on a porous support
– porous metal supports

■ easier to weld into a module
■ available pore sizes take thick Pd coatings (>20 µm) to plug

– porous ceramics
■ possess high temperature stability
■ commercially available tubes with well-defined pore sizes
■ α and γ-alumina, titania, zirconia
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Palladium alloys
■ Increased hydrogen permeability and durability
■ PdAg23 (weight %)

– tubes (100 µm thick) commonly used to purify hydrogen for 
semiconductor industry and hydrogen isotope recovery

– grain coarsening during operation at higher temperatures

■ PdRu6
– higher melting point metal imparts high-temperature stability and 

strength

■ PdCu40
– sulfur resistance
– D.L. McKinley, U.S. 3,439,474 (1969)
– D.J. Edlund
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Fabrication of a Pd-Cu Composite Membrane

■ Sequentially deposit Pd and then Cu
■ Anneal to promote metallic interdiffusion

– > 350°C
■ Characterization

– hydrogen flux and permselectivity
– thickness: SEM, EPMA
– composition: EDX, XRD
– depth profiling: XPS, AES, Rutherford backscattering
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Preparation of Pd/Ceramic Membrane
clean ceramic

membrane

seal ends of ceramic 
membrane with 
high temp. glaze

Sensitize surface w/SnCl2 solution

activate or seed surface 
with Pd crystallites

plate in aqueous solution of
Pd-amine complex and
reducing agent (N2H4)

• Surface of GTC 998 
0.2 µm symmetric 
Al2O3 Tube

»Scalebar is 2 µm
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Sensitizing/Activating

■ Must catalyze surface of non-conductor to initiate 
deposition

■ Sensitization w/SnCl2

■ Activation w/PdCl2

■ Water rinse

Cl- Sn2+ Cl- Cl- Pd2+ Cl-

Al Al Al

O Oδ- δ-

Al Al Al

O Oδ-

Sn2+

Al Al Al

O O δ-

Sn4+

Clδ- PdClδ-

M. Charbonnier et al. J. Electrochem. Soc. 143(2) 472 (1996).
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Membrane Preparation

■ Ends of porous tube are 
glazed to prevent gas 
bypass of selective layer

■ Electroless plating set-
up enables solution 
circulation while 
membrane is immersed 
in sucrose solution
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Pd-Cu/Alumina Composite Membrane

■ Image of a broken 
membrane showing 
copper layer 

■ Membrane is sealed 
into the module using 
compression fittings 
with graphite ferrules
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Test Module

■ 3 thermocouples on both 
the inside and outside of 
membrane

■ Catalyst packed inside the 
Pd-composite membrane

■ Max T = 550°C
■ Max P = 250 psig
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Hydrogen & Argon Flux vs. Time 
through Pd-Cu/Alumina Membrane

■ Hydrogen flux 
increases as 
Pd and Cu 
interdiffuse

■ ∆P = 100 psi
■ αH2/Ar ≅ 68
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Pd/refractory foil/Pd Composite
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Pd/V-alloy/Pd membrane
■ Palladium coating is 

very thin
– 1000 Å

■ Alloy of vanadium 
reduces hydrogen 
embrittlement

■ Welded into the shape 
of a tube

– SS VCR fittings
– Flux = 0.4 sccm/cm2•min @ 

∆P = 5 psi
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AES Depth Profiles of Pd on V-Cu
Auger Depth Profile
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Future Work

■ Membrane reactor
■ Pack catalyst around membrane
■ Low, medium, and high temperature water-

gas shift
■ Fe-Cr-Cu oxide, Cu-ZnO catalysts
■ Test sulfur resistance of membrane 

materials
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Fuel Reforming for Fuel Cells

■ High efficiency
■ High quality electricity
■ Backup (UPS) 
■ Decentralized power system
■ Home, business, vehicle
■ Liquid or gaseous fuel

– CnHm+nH2O ↔ nCO+[(m+2n)/2]H2


